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Magnetic field of an in-plane vortex outside a layered superconductor
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We present the solution to London’s equations for the magnetic fields of a vortex oriented parallel to the
planes, and normal to a crystal face, of a layered superconductor. These expressions account for flux spreading
at the superconducting surface, which can change the apparent size of the vortex along the planes by as much
as 30%. We compare these expressions with experimental rdS0t63-1829)10405-3

I. INTRODUCTION near this interface effects the magnetic fields above the in-

terface, and show that there is good agreement between these

Recently, scanning superconducting quantum interferencg e gretical results and scanning SQUID microscope mea-
device(SQUID) microscope magnetic imaging of interlayer syrements on single crystals of the layered figheuprate

vortices trapped between the planes of layered superconduggperconductor FBa,CuGs. 5 (T1-2201).
ors has been used to make direct measurements of the inter-

layer penetration depth in several layered Il. THE MODEL

superconductors:* These experiments provide local mea- A method for finding the field distribution of a straight
surements of the interlayer supercurrent density, which havgortex crossing a plane surface of an anisotropic supercon-
implications for the validity of the interlayer tunneling ductor has been developed in Ref. 8. We will outline this
modeP as a candidate mechanism for superconductivity irmethod and apply it to the case of a vortex, oriented atpng
the high critical temperature cuprate superconductors. in the ab plane of a uniaxial material, which crosses the
To date the quantitative modeling of these experimentplane faceca of the crystal. For a vortex not too close to the
has assumed that the vortex fields at the superconductogtystal corners, the crystal surface can be taken as an
vacuum interface are the same as those in the bulk, neglecifinite plane. We choose the coordinatey,z correspond-
ing the well-known effect that the magnetic fields from vor- "9 to¢,a,b of the crystal as shown in Fig. 1. Then the mass
tices spread as they approach the superconductor-vacudf'SO" IS diagonalm,,=ms,my,,=m,,~=m,. The standard

surface from within the superconductor. Exact theoretical expormal|zat|onm}m3—1 IS implied. T_he ”_‘et_h"d consists of
; . . . : ) solving London’s equations for the field inside the supercon-
pressions exist for a vortex in an isotropic London’s mddel.

For a vortex oriented perpendicular to the surface in a su eruntOr and matching the result to a solution of Maxwell's
. d PETPE X ! P equations in the vacuum outside the sample. For the isotropic
conductor with an isotropic penetration depththe fields

case, the problem is simplified by the cylindrical symmetr
above the surface can be approximated by a magnetic mono- P 2 P y y 4 y

pole located a distance below the surfac&’ This means y
that the spatial extent of the magnetic fields at the surface is TZ)
larger than in the bulk of the superconductor. If the bulk X
expressions were used to fit data at the surface, the fitted
value of the penetration depth would be longer than the real
value. This effect must be accounted for in making quantita-
tive estimates of the penetration depths by magnetic imaging Tz)a
c

(0,0,0)

measurements. For this purpose it is useful to examine vor-
tex spreading at the surface for a highly anisotropic super-
conductor, since recent experiments have studied vortices in
superconductors with . /\ 5,~10-100.

It is well known that the anisotropic London model is
appropriate for describing a stack of Josephson coupled su-
perconducting layers at length scales large compared to the
interlayer spacing. In this paper we present an exact solution
of London’s equations for a straight vortex approaching a FIG. 1. Geometry and axes used in this paper. A single vortex,
superconductor-vacuum interface normal to the interface, igentered ak=0,y=0, emerges normally to thec face of the crys-
an anisotropic superconductor. We show how flux spreadingpl located az=0.
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of the field distributiorf"® This is not the case for anisotropic with a symmetric matrix; :
materials, and a more general approach is needed. ) )
Inside the superconductor, the field(r,z), with r Ayy=1+mky—m;a”,

={x,y}, satisfies the London equatiots:
Ayy=—mykyky,

4’7T 2 (9Jk
hi——A Mhils 7= $o0(r) 5, . () A =imkea, 7
Here,| is the current density¢,=hc/2e is the supercon- Ayy=1+ mlkf(—m3a2,
ducting flux quantum, and the average penetration d&pth
=(A2phd)™® (N2p=mid? AE=m3A?). Ay, =i mzkya,
Deep inside the superconductor, the fib{d) has only a
z component. However, near the exit from the sample at A, =1+ m1k§+ mgkf,.

=0, the vortex “opens up” anth, ,h, are no longer zero. In
other words, Eq(1) is a system of three linear differential
equations fomh,,h,, andh, with a nonzero right-hand side

The determinant of this matrix must be zero, which provides
all possible values of::

(RHS). The general solution is then 1+myk2| 12
0 a1 =% —> , (8
h=h+h), 2 m
whereh(® solves the homogeneous system with zero RHS, 1+ mk2+mgk2) 2
() i ; ; | X =Y 9
whereash'’’ is a particular solution of the full systeifi). 34 M

The latter can be taken as the field of an infinitely long un-
perturbed vortex along this assures correct singular behav- Deep inside the superconductor, the surface correction
ior at the vortex axis. The Fourier transform of this field is h(®)(z— —) must vanish, implyinge; and az must be

positive. The homogeneous systén allows one to express
bo - (for each of thesex’s) two out of three componentd; in

h=—o—————7 3 i i ' :
1+)\§bk§+)\§k§ (3 terms of the third. We obtain after simple algebra:
2
With this choice oh(®), the fieldh(®) is the correction due to D 1+m,k, HD O ﬁH(l) . (10
: rd) X k z y z

the surface of the unperturbed vortex fibld. We note that My Kyarq ay
the Clem-Coffey result for a vortex parallel to the layers of a
Josephson coupled layered superconductor redude®)td 3)_ (3)_. %
one disregards the core correctidn. H'=0, Hy =i k_yH2(3)' (12)

Because the only sample boundary is parallel to the plane o ) ]
Xy, we Fourier transform Eq(l) with respect tox,y. We ~ Thus, the flelg)lnsme(gm sample will be determined com-
are then left with the system of equations fbfk,z)  Pletely afterH;™ andH;” are found from the boundary con-

= [drexp(ik-r)h(r,z): ditions at the sample surface.
The field outside the sample is described byhdid and
mihy—(1+ mlkf,)hXJr m;kykyhy—imikh; =0, curlh=0, so that one looks fon=V¢ with V2¢=0. The

general solution of Laplace’s equation which vanisheg at
mykekyhy+mghy — (1+mpkd)hy—imzk,h;=0, (4 —=is

‘P(k) eik~r—kz‘ (12)

imkyhy +imgkyhy + (1+mkE+mskg)h,= ¢ o(r Z):f ok

2
For brevity, we have set the averageas the unit of length (2)

so that\3,=\?m, and\2=\?m; are replaced witm; and  The two-dimensional2D) Fourier transform is defined by
ms; the prime in the above equations denotéslz. The

field h(®(k,z) satisfies thehomogeneousystem oflinear VY Ciker

second-order ordinary differentigith respect to the vari- e(k)=e f dr e(r,z) e ' (13

ablez) equations, i.e., it is a linear combination of exponen-

tial functions ofz The boundary conditions at the free surface0 consist

of continuity of the three field components:

h(°>(k,z)=; H(Men?, (5) ik, p=HD+H®,

The zindependent coefficientd(™ (k) anda,(k) are still to iky e=HV+H, (14)

be determined. Each term in the sB) should satisfy sepa-

rately the systend) with zero RHS. Omitting the label we —k o= h(z”)+ H<Zl>+ H<Z3> i

write this system as
The component$ (> are expressed in terms &f("? in

AjjH;=0 (6) Egs.(10) and(11), so that the systertil4) can be solved to
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find ¢ along with allH;’s. We are interested here primarily with a=(1+\;

in the field outside the sample:

b0 (1+mykd)

Maaz[MikZ ag(k+ aq) +kaz+ k2]

e(k)=~— (15
It is readily verified that for the isotropic material E{.5)
reduces to the known result by Peath=— ¢/ a;sk(k
+ a;s) whereajs is the isotropic version of either; or a3.°
Sinceoutsidethe sampléeh=V ¢, we have
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2k))M2 1t is worth noting that the quantity

H,(y,z) depends only on...
After the substitution\ ck,=sinhu, Eq. (24) takes the
form

du e U= 7S coqy’ sintu)

TN\¢ =

Hsz:y) fw

0

o

=Re| du e—u—wsith
0

h, (K)=iky, o(k), hy(k)=—ke(k). (16) 1 =
o i —Re -+ S (ExW)+Y,(w) . (29
Then, for example, the w
5 Here,y' =y/\;,z'=2z/\;, andw=(z+iy)/\.;E; and Y,
h(r Z):_f d’k Ke(k) ek ap ae Weber's and Neumann functions, see Ref. 12.
2 (27)2 ¢ ' For |w|<1 (bothy and z are small relative to\.) we

. _ have’?
In particular, the total magnetic flux through any plane

=7, is given byh,(k=0,z,) = ¢pg as expected. H,Y,2) W[ w 1
The fieldinsidethe sample is given by Eq€2), (3), and TN b0 =Re 1+ 2 In§+ Y35
(5). The coefficientdH*?) in —
z [ \y‘+z
h(0>(k,z)=H(1)ealz+ H (3 g3z (18) =1+ 2—)\C In y2)\c +0077>
are obtained by solving Eq§l4), (10), and(11): y y
- Xtan’l— (26)
(1) i i mlk)z(ky mlk)z(al c 4
H7 = (k) ik 1+mk2 1+ mk2| (19 (y=0.577 is Euler’s constantlf |w|>1 (at least one o or
X X zis large relative to\.), we obtain:
- 2
HO = (k)| 0,2 Sl e NtV _d L2 oY
1+ mlki a3(1+ mlki) The ¢0 - w W2
Thus, for example, 2\, (22_y2))\§
= - 2
— - ik-r+agz
hy(r.2) f (21)2 kuok) e ' 2Y) At large distances from the vortex exit, the second term can

be neglected anidl, drops out of the result; this is expected
For what follows, we will only concern ourselves with the since the field there is approaching the Coulomb form with
fields outside of the superconductor. In the experiment ofio trace of material properties.
Ref. 1, the componerit, was probed with a SQUID pickup To form a complete picture of the field distribution out-
loop which was much larger than the penetration depgh side the sample, we imagine that the same SQUID probe is
One therefore expects the instrument to measure a flugriented in thexz plane so that thg component of the field
nearly equal to the pickup loop size times (integrated over the probe aje&s measured. Then the
SQUID flux will be nearly equal to the pickup loop size

« times

Hz(x,y)=f oohz(x,y,z) dx. (22

B % % dky_ -
The vortex spreads as it approaches from below the superty(Y:2)= Jlmhy(x,y,z) dx= fﬁwﬁ'kyq’(o’ky)el R
conducting surface in the& direction as well as in thg (29)
direction; nevertheless numerical estimates show that under

typical conditions the experimental signal is well represented The two-dimensional field{ satisfies di¢{= curlH=0.

by Eq.(22). Then we obtain: Hence, it can be written @§=V® with V2®=0. This im-
Hy,z) (= dk plies thatH, andH, are real and imaginary parts of the same
27 =f s A — analytic function given in Eq(25):*®
bq —w 2T m3a(a+|ky|)

with a= a3(ky=0)=(mz *+k3)2 In conventional units,

eikyyf\kylz

(23

¢0 1 au
Hy(y,2)=w—)\clm \Tv+§[E1(W)+Y1(W)] . (29

eikyy_‘ky|z . . . .
In particular, the asymptotic form of this function far>1
can be written as

HAY.2) _ Joc dk, 20

bo Ny a(a+)\c|ky|)
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I I I I \ — Full theory
_ ---- No spreading _|
£ 10 X 2he=0 below surface
5 OR > =051 .
-1}
21 H 0.0 ! LT
0 1 2 3 4 5
-3 ] | Y
2 -

-3 o 1 2 3
v/t FIG. 3. Plot ofH,(y,z) for a single interlayer vortex normal to
: : : the superconducting surfaze= 0, as a function of/\ ., for fixedz
values, wherg is the distance from the center of the vortex along a
plane direction, and . is the interlayer penetration depth.
d?k or—k
b,(r,z)= —sz(k) e'x e (32
i (27)
7 where
L] 11 bz(k)zj d?kb,(x,y,z=0)e k" (33
3 2 -1 0 1 2 3 ] ] ) ]
Y (Ref. 14. The fields in thex andy directions are treated

R similarly, using the relationsb,(k)= —ik,b,(k)/k, and

FIG. 2. Streamline mapping di(y,z), the magnetic field inte- b, (k) = —ikyb,(k)/k. The calculated fields were integrated
grated over, for a single interlayer vortex shown in Fig. 1. The gyerx and streamlines were generated just as for the exact
spacing of the streamlines is proportional wH,/dy) * atz= | ondon expressions. This is the procedure used to model the
—3\c. (@ is the present model, which includes vortex spreading;ayperimental results in Ref. 1. In both cases the fields extend
(b) is for a model which neglects field spreading below the surfacejnig the vacuum nearly isotropically at large distances, as if a

point monopole source were placed near— \ .. In the full
1 1 1 treatment, Fig. @), the fields spread as the vortex ap-
w w2 w+1’ (30) proaches the surface from inside the superconductor.

A one-dimensional rendering of our results above the sur-
face of the superconductor is shown in Fig. 3, which plots
mAHL(Y,2)/ $pg as a function ofy/\. for several values of
z/\.. For comparison, the results neglecting vortex spread-
ing are also shown. Note that,(0,0), which approximately

. RESULTS indicates the peak signal in an experiment, is overestimated
. by a factor of#/2 if vortex spreading is neglected. Also, the

Figure 2a) shows streamlines df((y,z) for a single an-  full width at half maximum(FWHM) of the flux contour is

isotropic vortex centered at=0y=0. These streamlines 1 87\, for the full theory, while it is 1.3X. if flux spreading

were generated numerically as follows: the starting points ofs neglected. Therefore the neglect of flux spreading could
the lines were at/\ .= — 3, with a spacing iry between the  result in an overestimate af, by 30%.

lines proportional to {H,/dy) ! at z/\,= —3. Small steps
z=z+Az,y=y+Ay, with Az=4§sind,Ay=45cosd, were
generated, with 0=tan‘l(HZ(y,z)/Hy(y,z)). The fields
were recalculated at the new positions, and then the process Previous analyses of experimental dafapeglected the
was repeated untik/\¢|>3 or|y/\.|>3. Figure Zb) shows effect of vortex spreading at the surface. In retrospect, this
the results if field spreading below the surface is neglectedneglect was not unreasonable, given the quantitative agree-
ment between the interlayer coupling strength obtained from
bo B vortex imaging measurements and from the Josephson
———Ky(R), (3D plasma resonanceWith the full theory presented in this
27\ aphe paper, it is now possible to quantitatively examine this as-
) N ) _ sumption. However, we note that there are additional sys-
whereK is a modified Bessel function of the second kind of tematic experimental uncertainties in this technique. These
order 0,R=[(S/2\ 5p) 2+ (X/\ap) 2+ (Y/N)2]¥2 andsis the  errors include the effect of macroscopic screening currents
interplanar spacing: For s<\,;,, Eq. (31) has the Fourier which may create a slightly inhomogeneous background, a
transform given in Eq(3). The fields forz>0 are given by relative angle of 10—20 degrees between the surface of the

which implies that at large distances the figlcbehaves as a
field of a 2D “charge” situated at=—\..

IV. COMPARISON WITH EXPERIMENT

b,(x,y,z<0)=
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FIG. 4. Grey-scale images of five interlayer vortices in the high- 0.1 froese —
T. cuprate superconductor Tl-2201. The scaling corresponds to P Ac=20F2um
0.126(1),0.16¢¢(11),0.13¢¢(111),0.22¢4(IV), and 0.194(V) Voo 2p=2.6¥1.2ym
full-scale variation from black to white in the integrated flux e
through the pickup loop. 0.0 | I | e,
-60 -40 -20 0 20 40 60
Position(im)

superconductor and the SQUID pickup loop, the uncertainty

in the exact value of the height of the pickup loop, and some g, 5. cross sections along the plane directions through the
effect of the leads to the pickup loop on the effective shapgmages of Fig. 4. Each successive curve is offset by 0.1 unit for
of the pickup loop. We estimate that these errors may also bgarity. The dots are the data; the lines are fits to the present model
as large as 30%. as described in the text.

Figure 4 shows gray-scale images of five interlayer vorti- ) )
ces in TI-2201 magnetically imaged using a scanningMall uncertainty of the background signal, as free param-

SQUID microscopeé.In these experiments the experimental 8t€rs- The best fit values for each vortex are displayed in the
signal is equal to the integrated magnetic flux through thdi9ure, with uncertainties assigned using a doubling ofhe

pickup loop. The vortices appear elliptical in shape, with thevalue as a criterion. Reasonable agreement is obtained be-

long axis(parallel to the plandsearly vertical in these im- tween experimental and theoretical cross sections. The aver-

ages. The spatial extent of the vortex images perpendicul}9€ value foR, using a weighting inversely proportional to
to the planes is limited simply by the size of the pickup loop.(N€ Square of the uncertainties Ng=18.3£3 um. _
The spatial extent parallel to the planes is set primarily by FOr comparison, a similar analysis of the same vortices
the interplanar penetration depth. Figure 5 shows cross seB€dlecting the effect of vortex spreading resulted in a

tions through the experimental data along the direction parveighted average bestfit value af;=19+2 um. This
allel to the planes as indicated by the dashed lines in Fig. £0mparison is surprising at first, since the theoretical FWHM

To generate a theoretical expression for fitting the experi&t the surface is reduced by 30% when the vortex spreading

ment results, we use the full expressikg. (15)] for the is neglected. However, the uncertain value of the height of
magnetic fields, taking the-axis penetration depth equal to th€ Pickup loop compensates for the assumption of negli-
0.17 wm.%® An evaluation of Eq(15) gives thez component glble vortex spreading _below the surface._ When th_e spread-
of the field at a given height, above the sample surface. ing below the surface is neglected, the fitting routine com-

This field is then numerically integrated over the shape of th®€nsates by picking a higher valuezgf, thereby moving the
pickup loop to obtain the total theoretical fluky(x,y,7) spreading to the vacuum rather than the superconductor.

through the pickup loop as a function of the pickup loop In <_:onc|u5|0n, we have pr_esented a solution to London’s
position and the-axis penetration depthk, . In this case the equation for t_he case of an interlayer vortex approaching a
pickup loop used was a square 8@m on a side, with a superconductlr_lg surfacc_a normal to the surface :_:md parallgl to
1 wum linewidth, and a superconducting shield&m wide the pIar)es. T.h's mo_del IS approp(late for experiments Wh'.Ch
which extends to the top corner of the pickup loop, as ingi-magnetically image interlayer vortices. Good agreement with

cated by the inset of Fig. 4. For our modeling we add to thef’;\vailable experiments is obtained with this model, allowing
flux through the pickup loop one third of the flux intercept- the quantitative determination of the interlayer penetration

ing an area 5um by 5 um on a side, starting at the upper depths from these measurements.

corner of the pickup loop, to account for flux focusing effects  We would like to thank D. G. Hinks, T. W. Li, and Ming
from the superconducting shield. The solid lines in Fig. 5 areXu for supplying the TI-2201 crystals used for the SQUID
best fits of the cross sectighy(x=0,y,z=7;) to the experi- images shown in this paper. We would also like to thank M.
mental data, using the interlayer penetratian the height B. Ketchen for the design, and M. Bhushan for the fabrica-
of the pickup loopz,, and an offset flux, representing a tion, of the SQUID’s used here.
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